Mechanical characterization of brain tissue in simple shear at dynamic strain rates.

نویسندگان

  • Badar Rashid
  • Michel Destrade
  • Michael D Gilchrist
چکیده

During severe impact conditions, brain tissue experiences a rapid and complex deformation, which can be seen as a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when both the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical properties of brain tissue in shear at these strains and strain rates is thus of particular importance, as they can be used in finite element simulations to predict the occurrence of brain injuries under different impact conditions. However, very few studies in the literature provide this information. In this research, an experimental setup was developed to perform simple shear tests on porcine brain tissue at strain rates ≤120/s. The maximum measured shear stress at strain rates of 30, 60, 90 and 120/s was 1.15±0.25kPa, 1.34±0.19kPa, 2.19±0.225kPa and 2.52±0.27kPa, (mean±SD), respectively at the maximum amount of shear, K=1. Good agreement of experimental, theoretical (Ogden and Mooney-Rivlin models) and numerical shear stresses was achieved (p=0.7866-0.9935). Specimen thickness effects (2.0-10.0mm thick specimens) were also analyzed numerically and we found that there is no significant difference (p=0.9954) in the shear stress magnitudes, indicating a homogeneous deformation of the specimens during simple shear tests. Stress relaxation tests in simple shear were also conducted at different strain magnitudes (10-60% strain) with the average rise time of 14ms. This allowed us to estimate elastic and viscoelastic parameters (initial shear modulus, μ=4942.0Pa, and Prony parameters: g1=0.520, g2=0.3057, τ1=0.0264s, and τ2=0.011s) that can be used in FE software to analyze the non-linear viscoelastic behavior of brain tissue. This study provides new insight into the behavior in finite shear of brain tissue under dynamic impact conditions, which will assist in developing effective brain injury criteria and adopting efficient countermeasures against traumatic brain injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical characterization of brain tissue in compression at dynamic strain rates.

Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression test...

متن کامل

Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

BACKGROUND Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain r...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

Hyperelastic and Viscoelastic Properties of Brain Tissue in Tension

Mechanical characterization of brain tissue at high loading velocities is particularly important for modelling Traumatic Brain Injury (TBI). During severe impact conditions, brain tissue experiences a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical prop...

متن کامل

The mechanical behaviour of brain tissue: large strain response and constitutive modelling.

The non-linear mechanical behaviour of porcine brain tissue in large shear deformations is determined. An improved method for rotational shear experiments is used, producing an approximately homogeneous strain field and leading to an enhanced accuracy. Results from oscillatory shear experiments with a strain amplitude of 0.01 and frequencies ranging from 0.04 to 16 Hz are given. The immediate l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013